首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Importance of properties of the lowest and higher singlet excited states on the resonant two-photon ionization of stilbene and substituted stilbenes using two-color two-lasers
Authors:Hara Michihiro  Samori Shingo  Cai Xichen  Fujitsuka Mamoru  Majima Tetsuro
Institution:The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
Abstract:Radical cations of trans-stilbene and substituted trans-stilbenes (stilbenes and the radical cations denote Sand S(*+), respectively) were generated from the resonant two-photon ionization (TPI) in acetonitrile with irradiation of one-laser (266- or 355-nm laser) and with simultaneous irradiation of two-color two-lasers (266- and 532-nm or 355- and 532-nm lasers) with the pulse width of 5 ns each. The formation yields of S(*+), the TPI efficiency, depended on the properties of S in the lowest and higher singlet excited state (S(S(1)) and S(S(n))), generated from one-photon excitation with 266- or 355-nm laser and from two-photon excitation with simultaneous irradiation of 266- and 532-nm or 355- and 532-nm lasers, respectively. The TPI efficiency using two-color two-lasers increased compared with that using one-laser. It is confirmed that the TPI proceeds through two-step two-photon excitation with the S(0) --> S(1) --> S(n)() transition. In addition to the electronic character of S(S(0)) which depends on the substituent of S, oxidation potential, and molar absorption coefficient of the S(0) --> S(1) absorption as well-known important factors for the TPI efficiency, it is shown that properties of S(S(1)) and S(S(n)) such as lifetimes, electronic characters of S(S(1)) and S(S(n)), molar absorption coefficient of the S(1) --> S(n) absorption, and ionization rate from S(S(n)) are also important.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号