首页 | 本学科首页   官方微博 | 高级检索  
     检索      


X‐ray diffraction analysis of powder and thin film of (Gd1‐x Yx)2O3 prepared by sol‐gel process
Authors:Z K Heiba  L Arda
Abstract:The mixed oxide (Gd1‐xYx)2O3 (0.0 ≤ x ≤ 1.0) were synthesized, as powder and thin film, by a sol‐gel process. X‐ray diffraction data were collected and crystal structure and microstructure analysis were performed using Rietveld refinement method. All samples were found to have the same crystal system and formed solid solutions over the whole range of x. The cationic distribution, Gd3+ and Y3+, over the two non‐equivalent sites 8b and 24d of the space group Ia3 is found to be random for all values of (x). The lattice parameter is found to vary linearly with the composition (x). Replacing Gd3+ and Y3+ by each other introduces a systemic decrease in the x‐coordinate of cation position (24d) and slight changes in the oxygen coordinates. Crystallite size and microstrain analysis is performed along different crystallographic directions and anisotropic changes are found with the composition parameter (x). The average crystallite size ranges from 75 to 149 nm and the r.m.s strain from 0.027 to 0.068 x10‐2. Textured Gd1.841Y0.159O3 (400) buffer layers, with a high degree of alignment in both out‐plane and in‐plan, are successfully grown on cube textured Ni (001) tape substrates by sol–gel dip coating process. The resulting buffer layers are crack‐free, pinhole‐free, dense and smooth. YbBa2Cu3O7‐x (YbBCO) thin film could be (00l) epitaxially grown on the obtained buffer layer using sol–gel dipping technique. (© 2007 WILEY ‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:rare earth oxides  buffer layers  nano‐sized powder  YbBCO HTSs
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号