首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using Unfold‐PCA for batch‐to‐batch start‐up process understanding and steady‐state identification in a sequencing batch reactor
Authors:D Aguado  A Ferrer  A Seco  J Ferrer
Abstract:In chemical and biochemical processes, steady‐state models are widely used for process assessment, control and optimisation. In these models, parameter adjustment requires data collected under nearly steady‐state conditions. Several approaches have been developed for steady‐state identification (SSID) in continuous processes, but no attempt has been made to adapt them to the singularities of batch processes. The main aim of this paper is to propose an automated method based on batch‐wise unfolding of the three‐way batch process data followed by a principal component analysis (Unfold‐PCA) in combination with the methodology of Brown and Rhinehart 2 for SSID. A second goal of this paper is to illustrate how by using Unfold‐PCA, process understanding can be gained from the batch‐to‐batch start‐ups and transitions data analysis. The potential of the proposed methodology is illustrated using historical data from a laboratory‐scale sequencing batch reactor (SBR) operated for enhanced biological phosphorus removal (EBPR). The results demonstrate that the proposed approach can be efficiently used to detect when the batches reach the steady‐state condition, to interpret the overall batch‐to‐batch process evolution and also to isolate the causes of changes between batches using contribution plots. Copyright © 2007 John Wiley & Sons, Ltd.
Keywords:diagnosis  PCA  sequencing batch reactor  start‐up  steady‐state detection  wastewater
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号