首页 | 本学科首页   官方微博 | 高级检索  
     


Selective response of DPPV/zeolite composites toward acetone,methanol, and n-heptane vapors
Authors:Jirarat Kamonsawas  Anuvat Sirivat  Pimpa Hormnirun
Affiliation:1.The Petroleum and Petrochemical College,Chulalongkorn University,Pathumwan,Thailand;2.Department of Chemistry, Faculty of Science,Kasetsart University,Chatuchak,Thailand
Abstract:In this work, doped poly(p-phenylene vinylene)/zeolite composites was prepared to detect the three different chemical vapors (acetone, methanol, and n-heptane) and to investigate the effects of zeolite type, chemical vapor type, and vapor concentration based on the electrical conductivity response and selectivity properties of the sensing materials. Before blending with PPV, zeolite Y (Si/Al?=?5.1 and Na+), mordenite (Si/Al?=?18 and Na+), and 5A (LTA) (Si/Al?=?1.0 and Na+) were ion exchanged with Cu2+ at 80 % ion exchanged to prepare 80CuNaY, 80CuNaMOR, and 80CuNa5A. 80CuNaY exhibited the highest electrical conductivity response under acetone and methanol exposures while 80CuNaMOR showed the highest response in n-heptane exposure which depended on the adsorption and solubility properties of each porous material. When adding doped poly(p-phenylene vinylene) (dPPV) into the 80CuNaY matrix, the minimum detection vapor concentration decreased in acetone, methanol, and n-heptane vapors. For the selectivity, the composite between 80CuNaY and dPPV responded only in the polar vapors (acetone, methanol) whereas the composite between dPPV and 80CuNaMOR or dPPV_[90]80CuNaMOR responded only in the nonpolar vapor (n-heptane). The interactions between the sensing materials and the chemical vapors were investigated and identified by FTIR and AFM techniques.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号