首页 | 本学科首页   官方微博 | 高级检索  
     


Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation
Authors:Jacek Jagiello  James P. Olivier
Affiliation:1. Micromeritics Instrument Corporation, 4356 Communications Drive, Norcross, GA, 30093, USA
Abstract:In our recent paper (Jagiello and Olivier, Carbon 55:70–80, 2013) we considered introducing energetical heterogeneity (EH) and geometrical corrugation (GC) to the pore walls of the standard carbon slit pore model. We treated these two effects independently and we found that each of them provides significant improvement to the carbon model. The present work is a continuation of the previous one, as we include both effects in one comprehensive model. The existing standard slit pore model widely used for the characterization of activated carbons assumes graphite-like energetically uniform pore walls. As a result of this assumption adsorption isotherms calculated by the non-local density functional theory (NLDFT) do not fit accurately the experimental N2 data measured for real activated carbons. Assuming a graphene-based structure for activated carbons and using a two-dimensional-NLDFT treatment of the fluid density in the pores we present energetically heterogeneous and geometrically corrugated (EH–GC) surface model for carbon pores. Some parameters of the model were obtained by fitting the model to the reference adsorption data for non-graphitized carbon black. For testing, we applied the new model to the pore size analysis of porous carbons that had given poor results when analyzed using the standard slit pore model. We obtained an excellent fit of the new model to the experimental data and we found that the typical artifacts of the standard model were eliminated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号