首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of a circular thin film plasma source for atomic emission spectroscopy
Authors:J.M. Swan  R.D. Sacks
Affiliation:Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, U.S.A.
Abstract:A plasma source for analytical atomic emission spectroscopy is described based on the electrical vaporization by capacitive discharge of a thin Ag film deposited on a polycarbonate membrane filter. The source is designed for the rapid, direct analysis of solid powder samples collected by filtration from fluid media. A concentric electrode system consisting of a ring-shaped graphite electrode placed on the thin film surface and a pointed graphite rod located under the membrane substrate results in a plasma with cylindrical symmetry and a radial current path. Discharge current vs time and intensity vs time profiles are compared for the concentric electrode geometry and the linear geometry used in previous studies. Two values of tank circuit inductance also are compared. Both neutral-atom and ion line radiation from an Mn sample are more intense when the center electrode is initially cathodic. The inside diameter of the ring-shaped electrode and thus the surface area of the Ag film exposed to the plasma have relatively little effect on the intensity of continuum background and line radiation from a sample deposited near the center of the film. Particle size effects, while significant, are smaller than with the linear electrode geometry. Analytical curves are presented for several lines using both a low-inductance and a high-inductance discharge. Log-log slopes range from about 0.85 to 1.05 for ion lines. Detection limits are somewhat poorer than with the linear geometry.
Keywords:Author to whom correspondence should be directed.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号