Ultrasound-assisted free radical modification on the structural and functional properties of ovalbumin-epigallocatechin gallate (EGCG) conjugates |
| |
Affiliation: | 1. College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China;2. College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China |
| |
Abstract: | The influence of ultrasound-assisted free radical modification on the structure and functional properties of ovalbumin-epigallocatechin gallate (OVA-EGCG) conjugates was investigated by experimental measurements and computer simulations. Compared with the traditional free radical condition, the ultrasonic-assisted processing significantly increased the conjugating efficiency of OVA and EGCG and shortened the conjugating from 24 h to 1 h without affecting the equivalent amount of EGCG conjugating. The sodium dodecyl sulfate–polyacrylamide gel electrophoresis and multi-spectroscopy analysis (Fourier transform infrared spectroscopy, intrinsic fluorescence spectroscopy, and UV spectroscopy) indicated that the covalent conjugates could be formed between OVA and EGCG. And modification in the conformation of OVA was induced by EGCG. Furthermore, molecular docking results demonstrated the possession of high-affinity EGCG binding location on OVA, supporting and clarifying the experimental results. In addition, the functional properties of OVA including emulsification (emulsifying activity and emulsion stability) and antioxidant properties (DPPH scavenging capacity and ABTS scavenging capacity) were significantly improved after conjugation with EGCG, especially in ultrasound-assisted conditions. Overall, OVA-EGCG conjugates produced by ultrasound-assisted free radical treatment could be applied as a potential emulsifier and antioxidant, thereby expanding the application of OVA as a dual-functional ingredient. |
| |
Keywords: | Protein Polyphenol Ultrasound Molecular docking simulation Covalent binding |
本文献已被 ScienceDirect 等数据库收录! |
|