首页 | 本学科首页   官方微博 | 高级检索  
     


Boosting the electrochemiluminescence of luminol by high-intensity focused ultrasound pretreatment combined with 1T/2H MoS2 catalysis to construct a sensitive sensing platform
Affiliation:College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Institute of Biomedical Engineering, Qingdao University, Qingdao, Shandong 266071, China
Abstract:In the luminol-O2 ECL system, O2 as an endogenous coreactant has the advantages of non-toxicity and stability. Improving the efficiency to generate radicals of O2 is a challenge currently. In this work, a strategy combining physical method - ultrasound and nanomaterial with unique physicochemical properties was designed to enhance the ECL signal of luminol-O2 system. Specifically, high-intensity focused ultrasound (HIFU) pretreatment as a non-invasive method could generate ROS (H2O2, O2•−, OH•, 1O2) in situ, triggering and boosting the ECL signal of luminol. In addition, 1T/2H MoS2 with excellent catalytic activity could catalyze the H2O2 produced in situ, accelerate the oxidation of luminol and further enhance the ECL response. At the same time, combined with the catalytic hairpin assembly (CHA) reaction, the constructed ECL biosensing platform showed excellent performance for the detection of miRNA-155. The concentration range of 0.1 fM ∼ 1 nM with the detection limit as low as 0.057 fM were obtained. Furthermore, the ECL biosensor was also successfully applied to the determination of miRNA-155 in human serum samples. The established ECL sensing platform opens up a promising method for the detection of clinical biomarkers.
Keywords:Electrochemiluminescence  High-intensity focused ultrasound  Pretreatment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号