首页 | 本学科首页   官方微博 | 高级检索  
     


Evolving internal length scales in plastic strain localization for granular materials
Affiliation:1. State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi''an, Shaanxi 710072, PR China;2. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China;3. College of Physics and Electronic Engineering, Taizhou University, Taizhou, Zhejiang 318000, PR China
Abstract:A numerical model in the Cosserat continuum for strain localization phenomena in granular materials is developed and proposed in this paper. The model assumes a constant internal length scale that is used to describe the shear band thickness. However, it is observed that the internal length scales need to change to accommodate the possible change in the contact surface between the particles, damage of the particles or/and any change in the local void ratio within the domain, which will change the shear band thickness. The mathematical formulations used in the present numerical model were equipped with evolution equations for the length scales through the Micropolar theory, those formulations are proposed and discussed in this paper. The evolution equations of the internal length scales describe any possible change in the contact surface between the particles, damage of the particles if exists and/or any change in the local void ratio within the domain. Hence, the strain localization described by the enhanced model with evolving internal length scales is more accurate and closer to the real solution. The solution for the shear bands thickness shows more accurate correlation with the experimental results and less dependency on the mesh size when such evolution equations are used. Moreover, the shear band thickness and inclination evolve during the deformation process.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号