首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cooling effects on a model rennet casein gel system: part II. Permeability and microscopy
Authors:Zhong Qixin  Daubert Christopher R  Velev Orlin D
Institution:Department of Food Science, North Carolina State University, Raleigh, North Carolina 27695, USA.
Abstract:Microscopy and permeability studies were performed to further illustrate the cooling effects on rennet casein gel structure and help interpret the rheological observations in the first part of this paper. Samples of gels cooled from 80 to 5 degrees C at four rates (0.5, 0.1, 0.05, and 0.025 degrees C/min) were studied with a confocal laser scanning microscope. A larger number of smaller flocs were generated at slower cooling rates, creating more cross-links within a network and corresponding to a stronger gel. Formation of a larger number of smaller flocs was hypothesized to result from a greater degree of doublet formation because the system spent more time within the temperature region where doublet formation is favored when cooled at slower rates. The doublets represent sites available for floc growth, similar to nucleation sites for crystal growth. Microscopy results further substantiated that the cooling effects were different from the aging effects because cooling affected floc size, and aging enabled the addition of idle flocs into the casein network. The conclusions for the cooling effects on floc size were further supported by permeability tests. A smaller permeability coefficient resulted from smaller flocs obtained with a slower cooling schedule. This study showed the importance of controlling floc numbers to modulate the strength of a gel, and cooling rates provide an approach of modulating functional properties when the chemical composition of a system is fixed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号