首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of alumina phases on CO2 sorption and regeneration properties of potassium-based alumina sorbents
Authors:Soo Chool Lee  Min Sun Cho  Suk Yong Jung  Chong Kul Ryu  Jae Chang Kim
Affiliation:1. Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu, 702-701, Korea
2. Department of Chemical Engineering, Kyungpook National University, Daegu, 702-701, Korea
3. Korea Electric Power Research Institute, Daejon, 305-380, Korea
Abstract:A range of potassium-based alumina sorbents were fabricated by impregnation of alumina with K2CO3 to examine the effects of the structural and textural properties of alumina on the CO2 sorption and regeneration properties. Alumina materials, which were used as supports, were prepared by calcining alumina at various temperatures (300, 600, 950, and 1,200 °C). The CO2 sorption and regeneration properties of these sorbents were examined during multiple tests in a fixed-bed reactor in the presence of 1 vol% CO2 and 9 vol% H2O. The regeneration capacities of the potassium-based alumina sorbents increased with increasing calcination temperature of alumina. The formation of KHCO3 increased with increasing calcination temperature during CO2 sorption, whereas the formation of KAl(CO3)(OH)2, which is an inactive material, decreased. These results is due to the fact that the structure of alumina by the calcination temperature is related directly to the formation of the by-product [KAl(CO3)(OH)2]. The structure of alumina plays an important role in enhancing the regeneration capacity of the potassium-based alumina sorbent. Based on these results, a new potassium-based sorbent using δ-Al2O3 as a support was developed for post-combustion CO2 capture. This sorbent maintained a high CO2 capture capacity of 88 mg CO2/g sorbent after two cycles. In particular, it showed a faster sorption rate than the other potassium-based alumina sorbents examined.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号