首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Agostic interactions and dissociation in the first layer of water on Pt(111)
Authors:Jacob Timo  Goddard William A
Institution:Materials and Process Simulation Center, Beckman Institute (139-74), California Institute of Technology, Pasadena, California 91125, USA.
Abstract:Recent quantum mechanical (QM) calculations for a monolayer of H(2)O on Ru(0001) suggested a novel stable structure with half the waters dissociated. However, different studies on Pt(111) suggested an undissociated bilayer structure in which the outer half of the water has the OH bonds toward the surface rather than the O lone pair. Since water layers on Pt are important in many catalytic processes (e.g., the fuel cell cathode), we calculated the energetics and structure of the first monolayer of water on the Pt(111) surface using QM periodic slab using density functional calculations (DFT) with the PBE-flavor of exchange-correlation functional]. We find that the fully saturated surface ((2)/(3) ML) has half the water almost parallel to the surface (forming a Pt-O Lewis acid-base bond), whereas the other half are perpendicular to the surface, but with the H down toward the surface (forming a Pt-HO agostic bond). This leads to a net bond energy of 0.60 eV/water = 13.8 kcal/mol (the standard ice model with the H up configuration of the water molecules perpendicular to the surface is less stable by 0.092 eV/water = 2.1 kcal/mol). We examined whether the partial dissociation of water proposed for Ru(0001) could occur on Pt(111). For the saturated water layer ((2)/(3) ML) we find a stable structure with half the H(2)O dissociated (forming Pt-OH and Pt-H covalent bonds), which is less favorable by only 0.066 eV/water = 1.51 kcal/mol. These results confirm the interpretation of combined experimental (XAS, XES, XPS) and theoretical (DFT cluster and periodic including spectrum calculations) studies, which find only the H down undissociated case. We find that the undissociated structure leads to a vertical displacement between the two layers of oxygens of approximately 0.42 A (for both H down and H up). In contrast, the partially dissociated system leads to a flat structure with a separation of the oxygen layers of 0.08 A. Among the partially dissociated systems, we find that all subsurface positions for the dissociated hydrogen are less favorable than adsorbing on top of the free Pt surface atom. Our results suggest that for less than (1)/(3) ML, clustering would be observed rather than ordered monolayer structures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号