首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tensile properties of structural I clathrate hydrates: Role of guest–host hydrogen bonding ability
Authors:Yue Xin  Qiao Shi  Ke Xu  Zhi-Sen Zhang  Jian-Yang Wu
Institution:Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
Abstract:Clathrate hydrates (CHs) are one of the most promising molecular structures in applications of gas capture and storage, and gas separations. Fundamental knowledge of mechanical characteristics of CHs is of crucial importance for assessing gas storage and separations at cold conditions, as well as understanding their stability and formation mechanisms. Here, the tensile mechanical properties of structural I CHs encapsulating a variety of guest species (CH4, NH3, H2S, CH2O, CH3OH, and CH3SH) that have different abilities to form hydrogen (H-) bonds with water molecule are explored by classical molecular dynamics (MD) simulations. All investigated CHs are structurally stable clathrate structures. Basic mechanical properties of CHs including tensile limit and Young’s modulus are dominated by the H-bonding ability of host–guest molecules and the guest molecular polarity. CHs containing small CH4, CH2O and H2S guest molecules that possess weak H-bonding ability are mechanically robust clathrate structures and mechanically destabilized via brittle failure on the (1 0 1) plane. However, those entrapping CH3SH, CH3OH, and NH3 that have strong H-bonding ability are mechanically weak molecular structures and mechanically destabilized through ductile failure as a result of gradual global dissociation of clathrate cages.
Keywords:mechanical properties  clathrate hydrates  hydrogen bonding  
点击此处可从《Frontiers of Physics》浏览原始摘要信息
点击此处可从《Frontiers of Physics》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号