首页 | 本学科首页   官方微博 | 高级检索  
     


Optical modeling of liquid crystal biosensors
Authors:Hwang Dae Kun  Rey Alejandro D
Affiliation:Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 2B2, Canada.
Abstract:Optical simulations of a liquid crystal biosensor device are performed using an integrated optical/textural model based on the equations of nematodynamics and two optical methods: the Berreman optical matrix method [J. Opt. Soc. Am. 62, 502 (1972)] and the discretization of the Maxwell equations based on the finite difference time domain (FDTD) method. Testing the two optical methods with liquid crystal films of different degrees of orientational heterogeneities demonstrates that only the FDTD method is suitable to model this device. Basic substrate-induced texturing process due to protein adsorption gives rise to an orientation correlation function that is nearly linear with the transmitted light intensity, providing a basis to calibrate the device. The sensitivity of transmitted light to film thickness, protein surface coverage, and wavelength is established. A crossover incident light wavelength close to lambda(co) approximately 500 nm is found, such that when lambda>lambda(co) thinner films are more sensitive to the amount of protein surface coverage, while for lambda
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号