首页 | 本学科首页   官方微博 | 高级检索  
     


Flowability and Mechanical and Thermal Properties of Nylon 6/Ethylene bis-Stearamide/Carboxylic Silica Composites
Authors:Lala Zhang  Huijun Yin  Zhu Xiong  Yuanqin Xiong  Weijian Xu
Affiliation:Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering , Hunan University , Changsha , China
Abstract:Nylon 6 (PA 6)/ethylene bis-stearamide (EBS)/SiO2- carboxylic acid-functionalized silica nanoparticles (COOH) composites were prepared by in-situ polymerization of caprolactam. SiO2-COOH was used to enhance the compatibility between SiO2 and PA 6 matrix. For comparison, pure PA 6 and PA 6/EBS composites were also prepared via the same method. The PA 6/EBS/SiO2-COOH composites with low content of EBS and SiO2-COOH had greater melt-flow index (MFI) (the value of MFI increased by 50%–80%) than the pure PA 6. The results of mechanical properties showed almost no decrease in the tensile strength of PA 6/EBS/SiO2-COOH composites, with the bending strength decreasing by 17%–21%. However, the Izod impact strength of the PA 6/EBS/SiO2-COOH composites was greatly improved compared with pure PA 6, which indicated that the toughness of PA 6/EBS/SiO2-COOH had been greatly improved. The morphology of Izod impacted fractured surfaces of PA 6/EBS/SiO2-COOH was observed by scanning electron microscopy. The results revealed that the PA 6/EBS/SiO2-COOH composites presented a typical ductile fracture behavior with large amounts of long and large strip-like cracks. When the content of SiO2-COOH was 0.2 wt%, the SiO2-COOH particles were uniformly dispersed over the entire body of the PA 6 matrix. The results from differential scanning calorimetry indicated that the melting point (Tm), degree of crystallinity (Xc), and crystallization temperatures (Tc) of PA 6/EBS/SiO2-COOH composites were lower than the pure PA 6.
Keywords:carboxylic silica (SiO2-COOH)  composites  ethylene bis-stearamide (EBS)  mechanical properties  PA 6  toughness
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号