首页 | 本学科首页   官方微博 | 高级检索  
     

基于全卷积神经网络的图像去雾算法
引用本文:陈清江,张雪. 基于全卷积神经网络的图像去雾算法[J]. 应用光学, 2019, 40(4): 596-602. DOI: 10.5768/JAO201940.0402003
作者姓名:陈清江  张雪
作者单位:西安建筑科技大学 理学院, 陕西 西安 710055
基金项目:国家自然科学基金61403298陕西省教育厅自然科学基金15JK2157陕西省自然科学基金2015JM1024陕西省教育厅专项科研计划项目2013JK0586
摘    要:针对雾天环境下采集的图像对比度降低,饱和度下降以及色彩偏移问题,提出了一种基于全卷积神经网络的图像去雾算法。首先,提出的三个尺度的全卷积神经网络用来学习雾天图像与介质传输图之间的映射关系,逐步生成精细的介质传输图;其次,通过雾天图像引导滤波优化预测的介质传输图,使得图像边缘信息更加平滑;最后,根据暗原色先验理论估计大气光的值,通过大气散射模型恢复出无雾图像。该方法获得的无雾图像不但未造成图像中有用信息的损失,并且恢复的图像色彩自然。实验结果表明,该去雾算法在自然雾天图像和利用Middlebury Stereo Datasets合成的雾天图像上均优于其他对比算法,恢复的图像具有更好的对比度与清晰度。

关 键 词:图像去雾  卷积神经网络  大气散射模型  传输图  引导滤波
收稿时间:2018-10-15

Image defogging algorithm combined with full convolution neural network
CHEN Qingjiang,ZHANG Xue. Image defogging algorithm combined with full convolution neural network[J]. Journal of Applied Optics, 2019, 40(4): 596-602. DOI: 10.5768/JAO201940.0402003
Authors:CHEN Qingjiang  ZHANG Xue
Affiliation:College of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract:Aiming at the problems of contrast reduction, saturation reduction and color migration of images collected in foggy environment, an image defogging algorithm based on full convolution neural network is put forward. First, the proposed three scales convolution neural network is used to study the fog of the mapping relationship between foggy image and medium transmission map, gradually produce the refine medium transmission map; secondly, the foggy image is used as a guide map to refine the forecasting medium transmission map, so as to make the edge information of the image more smooth; finally, the value of atmospheric light is estimated according to the dark channel prior theory, and the fog-free image is recovered by the atmospheric scattering model. The fog-free image obtained by this method not only causes no loss of useful information in the image, but also restores the color of the image naturally. Experimental results show that the algorithm proposed is superior to other comparison algorithms in both natural fog images and fog images produced by Middlebury Stereo Datasets, and the restored images have better contrast and clarity.
Keywords:image dehazing  convolution neural network  atmospheric scattering model  transmission map  guided filter
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《应用光学》浏览原始摘要信息
点击此处可从《应用光学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号