首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应SRUKF的无人机位姿预测方法
引用本文:符毅,孔星炜,董新民. 基于自适应SRUKF的无人机位姿预测方法[J]. 应用光学, 2019, 40(1): 21-26. DOI: 10.5768/JAO201940.0101004
作者姓名:符毅  孔星炜  董新民
作者单位:空军工程大学 航空航天工程学院,陕西 西安 710038
基金项目:国家自然科学基金资助项目61473307
摘    要:针对无人机自主导航的实时性差、精度低且对时变噪声的鲁棒性弱的问题,建立了机器视觉和惯性导航相融合的组合导航系统,并提出了一种自适应平方根无迹卡尔曼滤波(adaptivesquare-root unscented kalman filter,ASRUKF)算法。该算法通过观测值与估计值残差的Ma-halanobis距离时刻修正系统噪声协方差,再与采用最小偏度采样的SRUKF算法相融合,从而达到时变噪声自适应抑制,滤波快速且对噪声鲁棒性高的效果。仿真结果表明,相比标准SRUKF,ASRUKF计算耗时减少约38.8%,位移、速度和姿态角预测精度分别提高超过4倍和6倍,且对于时变噪声鲁棒性更强。

关 键 词:自主空中加油  噪声自适应  MAHALANOBIS距离  最小偏度采样  平方根无迹卡尔曼滤波
收稿时间:2017-08-23

Adaptive square-root unscented Kalman filter for position and pose prediction of UAV
FU Yi,KONG Xingwei,DONG Xinmin. Adaptive square-root unscented Kalman filter for position and pose prediction of UAV[J]. Journal of Applied Optics, 2019, 40(1): 21-26. DOI: 10.5768/JAO201940.0101004
Authors:FU Yi  KONG Xingwei  DONG Xinmin
Affiliation:Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China
Abstract:To improve the real-time performance, the accuracy and the robustness of the unmanned aerial vehicle (UAV) autonomous navigation system under time-varying noise circumstance, an integrated navigation system of machine vision and inertial guidance was established, and an adaptive square-root unscented Kalamn filter (ASRUKF) was proposed. By introducing the Mahalanobis distance of the residual between the observed and predicted values to the minimal skew sampling square-root Kalman filter, the new algorithm can restrain the system noise adaptively, compute faster and be more robust to noise. The simulation results show that compared with the SRUKF, the ASRUKF is more robust to noise, and the computation time is reduced by about 38.8%, the forecast accuracy of displacement, velocity and attitude angle increases by more than 4 times, 4times, 6 times, respectively.
Keywords:autonomous aerial refueling  noise adaptation  Mahalanobis distance  minimal skew sampling  SRUKF
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《应用光学》浏览原始摘要信息
点击此处可从《应用光学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号