首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sulfonated Aromatic Polymers and Organically Modified Montmorillonite Nanocomposite Membranes for Fuel Cells Applications
Authors:Mahdi Tohidian  Seyed Reza Ghaffarian  Seyed Emadodin Shakeri  Ghasem Bahlakeh
Institution:1. Department of Polymer Engineering , Amirkabir University of Technology , Tehran , Iran;2. Department of Chemical Engineering , Amirkabir University of Technology , Tehran , Iran
Abstract:Aromatic polymers, such as sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), sulfonated poly(ether ether ketone) (SPEEK), and sulfonated poly(ether sulfone) (SPES), at the optimum degrees of sulfonation (DS), are suggested and evaluated as alternatives to Nafion for direct methanol fuel cells (DMFCs) applications. To reduce the methanol cross-over, which decreases the efficiency of the cell, organically modified montmorillonite nanoclays (OMMT) were added at 1 wt% to the sulfonated matrices with the optimum DS. The X-ray diffraction (XRD) patterns of nanocomposite membranes proved that the nanoclay layers were exfoliated. The proton conductivity and methanol permeability of the membranes, as well as the ion-exchange capacity (IEC), were measured. The selectivity parameter, ratio of proton conductivity to methanol permeability, was identified at 25°C for the nanocomposite membranes and the results were compared with Nafion117. Finally, the DMFC performance tests were investigated at 70°C and 5 M methanol feed for the manufactured nanocomposite polyelectrolyte membranes (PEMs). The SPEEK-based nanocomposite membrane showed the highest maximum power density in comparison with Nafion 117 and SPES and SPPO nanocomposite membranes. The results indicated that the nanocomposite membranes were promising PEMs for DMFC applications.
Keywords:aromatic polymers  fuel cell  montmorillonite  nafion  polyelectrolyte membrane  proton conductivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号