首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controlled synthesis of responsive hydrogel nanostructures via microcontact printing and ATRP
Authors:Hariharasudhan D Chirra  Dipti Biswal  J Zach Hilt
Institution:Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA
Abstract:Surfaces that are spatially functionalized with intelligent hydrogels, especially at the micro‐ and nanoscale, are of high interest in the diagnostic and therapeutic fields. Conventional methods of the semiconductor industry have been successfully employed for the patterning of hydrogels for various applications, but methods for fabricating precise 3 D patterns of hydrogels at the micro‐ and nanoscale over material surfaces remain limited. Herein, microcontact printing (µCP) followed by atom transfer radical polymerization (ATRP) was applied as a platform to synthesize temperature responsive poly(N‐isopropylacrylamide) hydrogels with varied network structures (e.g. different molecular weight crosslinkers) over gold surfaces. The XY control of the hydrogels was achieved using µCP, and the Z (thickness) control was achieved using ATRP. The controlled growth and the responsive behavior of hydrogels to temperature stimuli were characterized using Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM). The results demonstrate that this platform allows for the controlled growth of hydrogel nanostructures using the controlled ATRP mechanism. It is also shown that the molecular weight of the crosslinker affects the rate of hydrogel growth. These PNIPAAm‐based crosslinked hydrogel patterns were also demonstrated to have a temperature‐dependent swelling response. Using this technique, it is possible to synthesize responsive hydrogel patterns over various surfaces for potential applications in the biomedical field. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:ATRP  microcontact printing  NIPAAm  hydrogels  surface initiated polymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号