首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal and ion transport properties of hydrophilic and hydrophobic polymerized styrenic imidazolium ionic liquids
Authors:Ryan L. Weber  Yuesheng Ye  Steven M. Banik  Yossef A. Elabd  Michael A. Hickner  Mahesh K. Mahanthappa
Affiliation:1. Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, Wisconsin 53706;2. Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104;3. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Abstract:Polymerized ionic liquids (PILs) are a platform for fundamental studies of structure‐property relationships in single ion conductors, with potential applications in energy storage and conversion. The synthesis, thermal properties, and ionic conductivities of homologous, narrow dispersity styrenic PILs are described. Hydrophilic poly(4‐vinylbenzyl alkylimidazolium chloride) (PVBn(alkyl)ImCl) homopolymers with constant average degrees of polymerization were synthesized by post‐synthetic functionalization of a poly(4‐vinylbenzyl chloride) (Mn = 15.9 kg/mol, Mw/Mn = 1.34) master batch with N‐alkylimidazoles (alkyl = ? CH3 (Me), ? C4H9 (Bu), and ? C6H13 (Hex)). The chloride counterions of PVBnHexImCl were exhaustively metathesized with BFurn:x-wiley:08876266:media:POLB22319:tex2gif-stack-1, PFurn:x-wiley:08876266:media:POLB22319:tex2gif-stack-2, and bis(trifluoromethanesulfonyl)imide (TFSI?) to yield a series of hydrophobic PILs. Thermogravimetric analyses indicate that PVBn(alkyl)ImCl homopolymers are unstable above 220 °C, whereas the hydrophobic PILs remain stable up to 290 °C. The glass transition temperatures (Tg) decrease with both increasing alkyl side‐chain length and increasing counterion size, exemplified by Tg = 9 °C for PVBnHexImTFSI. Hydrophilic PILs exhibit high ionic conductivities (as high as ~0.10 S cm?1) that depend on the relative humidity, water uptake, and the PIL side chain length. The hydrophobic PILs exhibit lower conductivities (up to ~5 × 10?4 S cm?1) that depend predominantly on the polymer Tg, however, counterion size and symmetry also contribute. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1287–1296, 2011
Keywords:conducting polymers  controlled polymerization  ionomers  polyelectrolytes  radical polymerization  single ion conductor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号