Preparation and characterization of Ag‐deposited aminosilane‐modified silicate by chemical reduction method |
| |
Authors: | K. H. Wu Y. C. Chang M. Z. Zheng C. C. Yang W. P. Lin |
| |
Affiliation: | 1. Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, NDU, Tahsi, Taoyuan 335, Taiwan;2. Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Lungtan, Taoyuan 325, Taiwan;3. Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan |
| |
Abstract: | Nanocomposites based on silver (Ag) and organically modified silicate (Ormosil) were prepared by an in situ reduction method, in which silver nitrate, tetraethoxysilane and N‐[3‐(trimethoxysilyl)propyl]diethylenetriamine (ATS) acted as precursor, linker, and colloidal suspension stabilizer, respectively. The objective of the study was to produce silver nanoparticles through AgNO3 chemical reduction in a continuous media, in which aminosilanes act as superficial modifiers of Ag nanoparticles, inhibiting their growth and preventing aggregation. The physical properties of the Ormosil/Ag composites were examined using NMR, electron spin resonance, scanning electron microscope, transmission electron microscope, and thermal gravimetric analysis spectroscopy, the results of which indicated that Ag was incorporated in the Ormosil matrix after impregnation. The Ag content and surface morphology of the Ormosil/Ag composites depended on the initial concentration of AgNO3. The antibacterial effects of the Ormosil/Ag composites were assessed by the zone of inhibition and plate‐counting methods, and an excellent antibacterial performance was discovered. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 |
| |
Keywords: | biological applications of polymers ESR/EPR nanocomposites polysiloxanes |
|
|