首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Indium flux synthesis of RE4Ni2InGe4 (RE = Dy, Ho, Er, and Tm): an ordered quaternary variation on the binary phase Mg5Si6
Authors:Salvador James R  Kanatzidis Mercouri G
Institution:Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
Abstract:The quaternary compounds RE4Ni2InGe4 (RE = Dy, Ho, Er, and Tm) were obtained as large single crystals in high yields from reactions run in liquid In. The title compounds crystallize in the monoclinic C2/m space group with the Mg(5)Si(6) structure type with lattice parameters a = 15.420(2) A, b = 4.2224(7) A, c = 7.0191(11) A, and beta = 108.589(2) degrees for Dy4Ni2InGe4, a = 15.373(4) A, b = 4.2101(9) A, c = 6.9935(15) A, and beta = 108.600(3) degrees for Ho4Ni2InGe4, a = 15.334(7) A, b = 4.1937(19) A, c = 6.975(3) A, and beta =108.472(7) degrees for Er4Ni2InGe4, and a = 15.253(2) A, b = 4.1747(6) A, c = 6.9460(9) A, and beta = 108.535(2) degrees for Tm4Ni2InGe4. RE4Ni2InGe4 formed in liquid In from a melt that was rich in the rare-earth component. These compounds are polar intermetallic phases with a cationic rare-earth substructure embedded in a transition metal and main group matrix. The rare-earth atoms form a highly condensed network, leading to interatomic distances that are similar to those found in the elemental lanthanides themselves. The Dy and Ho analogues display two maxima in the susceptibility, suggesting antiferromagnetic ordering behavior and an accompanying spin reorientation. The Er analogue shows only one maximum in the susceptibility, and no magnetic ordering was observed for the Tm compound down to 2 K.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号