首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A novel synthesis of (3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole), alternating polymer formation, characterization, and capacitance measurements
Authors:Murat Ates  Nesimi Uludag  Tolga Karazehir  Fatih Arican
Institution:1. Department of Chemistry, Faculty of Arts and Sciences, Namik Kemal University, Degirmenalti Campus, Tekirdag, 59030, Turkey
2. Department of Chemistry, Faculty of Arts and Sciences, Istanbul Technical University, Istanbul, Maslak, Turkey
Abstract:In this work, (3,6-bis(2,3-dihydrothieno3,4-b]1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole) (EDOTVBCz) comonomer was chemically synthesized and characterized by Fourier transform infrared (FTIR), proton nuclear magnetic resonance, and carbon nuclear magnetic resonance spectroscopy. EDOTVBCz was electrocoated on glassy carbon electrode (GCE) in various initial molar concentrations (EDOTVBCz]0?=?1.0, 1.5, 2.0, and 3.0) in 0.1 M lithium perchlorate (LiClO4)/acetonitrile (CH3CN). P(EDOTVBCz)/GCE was characterized by cyclic voltammetry, FTIR reflectance-attenuated total reflection spectroscopy, scanning electron microscopy–energy dispersive X-ray analysis, atomic force microscopy, and electrochemical impedance spectroscopy (EIS). EIS was used to determine the capacitive behaviors of modified GCE via Nyquist, Bode magnitude, Bode phase, and admittance plots. The highest low-frequency capacitance value was obtained as C LF?=?~2.35 mF cm?2 for EDOTVBCz]0?=?3.0 mM. Double-layer capacitance of the polymer/electrolyte system was calculated as C dl?=?~2.78 mF cm?2 for EDOTVBCz]0?=?1.0 and 3.0 mM. The maximum phase angle was obtained as θ?=?~76.7o for EDOTVBCz]0?=?1.0, 1.5, 2.0, and 3.0 mM at the frequency of 20.6 Hz. AC impedance spectra of P(EDOTVBCz)/LiClO4/CH3CN was obtained by performing electrical equivalent circuit model of R(Q(R(CR))) with linear Kramers–Kronig test.
Figure
SEM-EDX analysis of P(EDOTVBCz)/CFME EDX point analysis inset: SEM point analysis, EDOTVBCz]0?=?3 mM. Chronoamperometric method of constant potential at 1.6 V, 300 s in 0.1 M LiClO4/CH3CN
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号