首页 | 本学科首页   官方微博 | 高级检索  
     


Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive Regime
Authors:Ahmad Shafiei Aporvari  David Vitali
Affiliation:1.School of Science and Technology, Physics Division, University of Camerino, I-62032 Camerino, Italy;2.Department of Physics, University of Naples “Federico II”, I-80126 Napoli, Italy;3.Istituto Nazionale di Fisica Nucleare(INFN), Sezione di Perugia, I-06123 Perugia, Italy;4.Consiglio Nazionale delle Ricerche—Istituto Nazionale di Ottica (CNR-INO), L.go Enrico Fermi 6, I-50125 Firenze, Italy
Abstract:Cavity optomechanics represents a flexible platform for the implementation of quantum technologies, useful in particular for the realization of quantum interfaces, quantum sensors and quantum information processing. However, the dispersive, radiation–pressure interaction between the mechanical and the electromagnetic modes is typically very weak, harnessing up to now the demonstration of interesting nonlinear dynamics and quantum control at the single photon level. It has already been shown both theoretically and experimentally that if the interaction is mediated by a Josephson circuit, one can have an effective dynamics corresponding to a huge enhancement of the single-photon optomechanical coupling. Here we analyze in detail this phenomenon in the general case when the cavity mode and the mechanical mode interact via an off-resonant qubit. Using a Schrieffer–Wolff approximation treatment, we determine the regime where this tripartite hybrid system behaves as an effective cavity optomechanical system in the strong coupling regime.
Keywords:cavity optomechanics   strong coupling regime   hybrid quantum systems
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号