首页 | 本学科首页   官方微博 | 高级检索  
     


Weighted Tensor Product Algorithms for Linear Multivariate Problems
Abstract:We study the ε-approximation of linear multivariate problems defined over weighted tensor product Hilbert spaces of functions f of d variables. A class of weighted tensor product (WTP) algorithms is defined which depends on a number of parameters. Two classes of permissible information are studied. Λall consists of all linear functionals while Λstd consists of evaluations of f or its derivatives. We show that these multivariate problems are sometimes tractable even with a worst-case assurance. We study problem tractability by investigating when a WTP algorithm is a polynomial-time algorithm, that is, when the minimal number of information evaluations is a polynomial in 1/ε and d. For Λall we construct an optimal WTP algorithm and provide a necessary and sufficient condition for tractability in terms of the sequence of weights and the sequence of singular values for d=1. ForΛstd we obtain a weaker result by constructing a WTP algorithm which is optimal only for some weight sequences.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号