首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition
Authors:Vikas Srivastava  Shawn A ChesterNicoli M Ames  Lallit Anand
Institution:Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Abstract:Amorphous thermoplastic polymers are important engineering materials; however, their non-linear, strongly temperature- and rate-dependent elastic-viscoplastic behavior is still not very well understood, and is modeled by existing constitutive theories with varying degrees of success. There is no generally agreed upon theory to model the large-deformation, thermo-mechanically-coupled, elastic-viscoplastic response of these materials in a temperature range which spans their glass transition temperature. Such a theory is crucial for the development of a numerical capability for the simulation and design of important polymer processing operations, and also for predicting the relationship between processing methods and the subsequent mechanical properties of polymeric products. In this paper we extend our recently published theory Anand, L., Ames, N. M., Srivastava, V., Chester, S. A., 2009. A thermo-mechanically-coupled theory for large deformations of amorphous polymers. Part I: formulation. International Journal Plasticity 25, 1474–1494; Ames, N. M., Srivastava, V., Chester, S. A., Anand, L., 2009. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: applications. International Journal of Plasticity 25, 1495–1539] to fill this need.
Keywords:Polymers  Viscoplasticity  Thermo-mechanically-coupled  Experiments  Finite-elements
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号