首页 | 本学科首页   官方微博 | 高级检索  
     


A novel yield function for single crystals based on combined constraints optimization
Authors:Amir R. Zamiri  Farhang Pourboghrat
Affiliation:Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
Abstract:A novel yield function representing the overall plastic deformation in a single crystal is developed using the concept of optimization. Based on the principle of maximum dissipation during a plastic deformation, the problem of single crystal plasticity is first considered as a constrained optimization problem in which constraints are yield functions for slip systems. To overcome the singularity that usually arises in solving the above problem, a mathematical technique is used to replace the above constrained optimization problem with an equivalent problem which has only one constraint. This single constraint optimization problem, the so-called combined constraints crystal plasticity (CCCP) model, is implemented into a finite element code and the results of modeling the uniaxial tensions of the single crystal copper along different crystallographic directions and also hydroforming of aluminum tubes proved the capability of the proposed CCCP model in accurately predicting the deformation in polycrystalline materials.
Keywords:Crystal plasticity   Single crystal   Yield function   Tube hydroforming
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号