首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization and characterization of electrospun chitosan/poly(vinyl alcohol) nanofibers as a phenol adsorbent via response surface methodology
Authors:Aliyeh Yousefi Abdolmaleki  Hamid Zilouei  Saied Nouri Khorasani  Amir Abdolmaleki
Affiliation:1. Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran;2. Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
Abstract:Fabrication and characterization of chitosan/poly(vinyl alcohol) electrospun nanofibers for adsorption of phenol from water were investigated. The effects of voltage (15–30 kV), solution injection flow rate (0.5–1.5 ml/hr), distance of needle and collector (10–20 cm) and chitosan/poly(vinyl alcohol) ratio (25/75, 50/50, 75/25) were studied to obtain the optimum electrospinning conditions for the maximum adsorption capacity of phenol. Central composite design (CCD) was used to investigate and optimize the processing factors for production of chitosan/poly(vinyl alcohol) nanofibers from aqueous solutions. The nanofibers were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy (FTIR). Uniform beadless nanofibers with the minimum diameters of 3–11 nm were obtained at chitosan/poly(vinyl alcohol) ratio of 50/50, voltage of 22.5 kV, distance of 15 cm and injection flow rate of 1.99 ml hr?1. Fourier transform infrared spectrum of chitosan/poly(vinyl alcohol) exhibited the existence of relevant functional groups of both poly(vinyl alcohol) and chitosan in the blends. Results of CCD show that among all processing factors, rate of electrospinning will highly affect the nanofiber adsorption. The response surface quadratic order model presented correlation coefficient explaining 69.5% of the variability in the adsorption. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:electrospinning  nanofibers  adsorption  central composite design  chitosan/poly(vinyl alcohol) blend
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号