首页 | 本学科首页   官方微博 | 高级检索  
     


On the accuracy of density functional theory for iron-sulfur clusters
Authors:Szilagyi Robert K  Winslow Mark A
Affiliation:Department of Chemistry and Biochemistry, Montana State University, 223 Gaines Hall, Bozeman, Montana 59717, USA. Szilagy@Montana.edu
Abstract:A simple, yet powerful wave function manipulation method was introduced utilizing a generalized ionic fragment approach that allows for systematic mapping of the wave function space for multispin systems with antiferromagnetic coupling. The use of this method was demonstrated for developing ground state electronic wave function for [2Fe-2S] and [Mo-3Fe-4S] clusters. Using well-defined ionic wave functions for ferrous and ferric irons, sulfide, and thiolate fragments, the accuracy of various density functionals and basis sets including effective core potentials were evaluated on a [4Fe-4S] cluster by comparing the calculated geometric and electronic structures with crystallographic data and experimental atomic spin densities from X-ray absorption spectroscopy, respectively. We found that the most reasonable agreement for both geometry and atomic spin densities is obtained by a hybrid functional with 5% HF exchange and 95% density functional exchange supplemented with Perdew's 1986 correlation functional. The basis set seems to saturate only at the triple-zeta level with polarization and diffuse functions. Reasonably preoptimized structures can be obtained by employing computationally less expensive effective core potentials, such as the Stuttgart-Dresden potential with a triple-zeta valence basis set. The extension of the described calibration methodology to other biologically important and more complex iron-sulfur clusters, such as hydrogenase H-cluster and nitrogenase FeMo-co will follow.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号