Abstract: | With the strong-field scheme and trigonal bases, the complete d3 energy matrix in a trigonally distorted cubic-field has been constructed. By diagonalizing this matrix, the normal-pressure energy spectra and wavefunctions of GSGG:Cr3+ at 70 K and 300 K have been calculated without the electron-phonon interaction (EPI), respectively. Further, the contributions to energy spectra from EPI at two temperatures have also been calculated, where temperatureindependent terms of EPI are found to be dominant. The sum of aforementioned two parts gives rise to the total energy spectrum. The calculated results are in good agreement with all the optical-spectral experimental data and the experimental results of g||(R1) and g⊥(R1). It is found that the contribution from EPI to R1 line of GSGG:Cr3+ with taking into account spin-orbit interaction (Hso) and trigonal field (Vtrig) is much larger than the one with neglecting Hso and Vtrig, and accordingly it is essential for the calculation of the EPI effect to take first into account Hso and Vtrig. The admixture of base-wavefunctions, |t32 2E) and |t22(3T1)e4T2 ), the average energy separation △= E[t22 (3T1)e4T2]-E[t32 2E] and their variations with temperature have been calculated and discussed. |