首页 | 本学科首页   官方微博 | 高级检索  
     检索      


LDI and ESI MS as well as low energy CID of a self-assembling nanorod-forming fullerene derivative
Authors:Rechthaler Justyna  Pelzing Matthias  Ingendoh Arndt  Kukovecz Akos  Prato Maurizio  Kuzmany Hans  Allmaier Günter
Institution:Institute of Chemical Technologies and Analysis, Vienna University of Technology, Getreidemarkt 9/164, A-1060, Vienna, Austria.
Abstract:An amphiphatic fullerene derivative (8-(N-Methyl-Fullero-Pyrrolidinium-1-yl-chloride)-3,6-Dioxaoctan-1-Ammonium Chloride (MFPDAC)), which is of great interest in nanotechnology due to the fact that it forms self-assembling fullerenic nanorods, has been structurally characterized with emphasis to its purity and thermal treatment of a formed nanorod film (on a LDI target) by means of laser desorption/ionization (LDI) coupled with high-resolution curved field reflectron time-of-flight (TOF) mass spectrometry, and by low energy MS/MS as well as in-source fragmentation experiments applying an quadrupole ion trap (QIT) combined with a two-stage reflectron TOF analyzer. The interpretation of LDI results has been supplemented by ESI QIT MS(n) (n = 1-3), as well as high-resolution ESI reflectron TOF mass spectrometric experiments. Based on the experimental data obtained by both desorption/ionization techniques, various types of analyzers and sample treatments, we could completely characterize MFPDAC and further found out that the investigated sample was not entirely free of impurities. Furthermore, the envisaged loss of the derivative sidechain upon the heat treatment in vacuum of the self-assembled nanorod sample film on a metallic substrate could be successfully monitored by LDI MS.
Keywords:fullerene derivative  LDI  ESI  multistage CID  tandem MS
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号