首页 | 本学科首页   官方微博 | 高级检索  
     


Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction
Authors:Zhou  M.  Luo  Z. Q.  Wang  J. Z.  Ye  C. C.  Fu  H. Y.  Zhang  C.  Cai  Z. P.  Xu  H. Y.
Affiliation:1.Department of Electronic Engineering, Xiamen University, Xiamen, 361005, China
;
Abstract:An all-fiber multiwavelength erbium-doped fiber laser (MEDFL) functionalized with evanescent-field-interacting graphene is proposed and experimentally demonstrated. Graphene-polymer nanocomposites were deposited around the waist region of a fiber taper fabricated by flame-stretching method. Using the graphene-deposited fiber taper (GDFT) to induce four-wave mixing (FWM) as a power-equalizing device for suppressing the unstable mode competition in MEDFL, stable multiwavelength lasing around 1530 nm was obtained with a wavelength spacing of 0.56 nm, an extinction ratio of 33 dB, and a narrow linewidth per channel of <0.01 nm. The output spectrum of the multiwavelength laser has a good flatness, and the power fluctuation of each wavelength is less than 1.5 dB. Comparing with the traditional methods, such evanescent-field-interaction based graphene stabilizing mechanism for multiwavelength generation possesses unique advantages: (1) it can avoid the graphene thermal damage, (2) it’s a real all-fiber integrated structure, and (3) it provides a longer interaction length for exciting FWM more efficiently.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号