首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A gate mechanism indicated in the selectivity filter of the potassium channel KscA
Authors:J Kóňa  M Minozzi  V Torre  P Carloni
Institution:(1) International School for Advanced Studies (SISSA), Via Beirut 4, 34014 Trieste, Italy
Abstract:Classical molecular dynamics (MD) and non-equilibrium steered molecular dynamics (SMD) simulations were performed on the molecular structure of the potassium channel KcsA using the GROMOS 87 force fields. Our simulations focused on mechanistic and dynamic properties of the permeation of potassium ions through the selectivity filter of the channel. According to the SMD simulations a concerted movement of ions inside the selectivity filter from the cavity to extracellular side depends on the conformation of the peptide linkage between Val76 and Gly77 residues in one subunit of the channel. In SMD simulations, if the carbonyl oxygen of Val76 is positioned toward the ion bound at the S3 site (gate-opened conformation) the net flux of ions through the filter is observed. When the carbonyl oxygen leaped out from the filter (gate-closed conformation), ions were blocked at the S3 site and no flux occurred. A reorientation of the Thr75-Val76 linkage indicated by the CHARMM-based MD simulations performed Berneche and Roux (2005) Structure 13:591–600; (2000) Biophys J 78:2900–2917] as a concomitant process of the Val76-Gly77 conformational interconversion was not observed in our GROMOS-based MD simulations.
Keywords:Channels  Ion transport  Molecular dynamics simulations  Computer modeling  GROMOS
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号