首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases
Authors:Kraack Jan Philip  Buckup Tiago  Motzkus Marcus
Institution:Physikalisch-Chemisches Institut, Ruprecht-Karls Universit?t Heidelberg, D-69210 Heidelberg, Germany.
Abstract:We report on vibrational coherence dynamics in excited and ground electronic states of all-trans retinal protonated Schiff-bases (RPSB), investigated by time-resolved Degenerate Four-Wave-Mixing (DFWM). The results show that wave packet dynamics in the excited state of RPSB consist of only low-frequency (<800 cm(-1)) modes. Such low-frequency wave packet motion is observed over a broad range of detection wavelengths ranging from excited state absorption (~500 nm) to stimulated emission (>600 nm). Our results indicate that low-frequency coherences in the excited state are not activated directly by laser excitation but rather by internal vibrational energy redistribution. This is supported by the observation that similar coherence dynamics are not observed in the electronic ground state. Challenging previous experimental results, we show that the formation of low-frequency coherence dynamics in RPSB does not require significant excess vibrational energy deposition in the excited state vibrational manifolds. Concerning ground state wave packet dynamics, we observe a set of high-frequency (>800 cm(-1)) modes, reflecting mainly single and double bond stretching motion in the retinal polyene-chain. Dephasing of these high-frequency coherences is mode-dependent and partially differs from analogous vibrational dephasing of the all-trans retinal chromophore in a protein environment (bacteriorhodopsin).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号