首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combustion chemistry: important features of the C3H5 potential energy surface, including allyl radical, propargyl + H2, allene + H, and eight transition states
Authors:Narendrapurapu Beulah S  Simmonett Andrew C  Schaefer Henry F  Miller James A  Klippenstein Stephen J
Institution:Center for Computational Quantum Chemistry, University of Georgia, Athens, United States.
Abstract:The C(3)H(5) potential energy surface (PES) encompasses molecules of great significance to hydrocarbon combustion, including the resonantly stabilized free radicals propargyl (plus H(2)) and allyl. In this work, we investigate the interconversions that take place on this PES using high level coupled cluster methodology. Accurate geometries are obtained using coupled cluster theory with single, double, and perturbative triple excitations CCSD(T)] combined with Dunning's correlation consistent quadruple-ζ basis set cc-pVQZ. The energies for these stationary points are then refined by a systematic series of computations, within the focal point scheme, using the cc-pVXZ (X = D, T, Q, 5, 6) basis sets and correlation treatments as extensive as coupled cluster with full single, double, and triple excitation and perturbative quadruple excitations CCSDT(Q)]. Our benchmarks provide a zero-point vibrational energy (ZPVE) corrected barrier of 10.0 kcal mol(-1) for conversion of allene + H to propargyl + H(2). We also find that the barrier for H addition to a terminal carbon atom in allene leading to propenyl is 1.8 kcal mol(-1) lower than that for the addition to a central atom to form the allyl radical.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号