首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Air-breathing laminar flow-based microfluidic fuel cell
Authors:Jayashree Ranga S  Gancs Lajos  Choban Eric R  Primak Alex  Natarajan Dilip  Markoski Larry J  Kenis Paul J A
Institution:Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 61801, USA.
Abstract:This communication reports the design and characterization of an air-breathing laminar flow-based microfluidic fuel cell (LFFC). The performance of previous LFFC designs was cathode-limited due to the poor solubility and slow transport of oxygen in aqueous media. Introduction of an air-breathing gas diffusion electrode as the cathode addresses these mass transfer issues. With this design change, the cathode is exposed to a higher oxygen concentration, and more importantly, the rate of oxygen replenishment in the depletion boundary layer on the cathode is greatly enhanced as a result of the 4 orders of magnitude higher diffusion coefficient of oxygen in air as opposed to that in aqueous media. The power densities of the present air-breathing LFFCs are 5 times higher (26 mW/cm2) than those for LFFCs operated using formic acid solutions as the fuel stream and an oxygen-saturated aqueous stream at the cathode ( approximately 5 mW/cm2). With the performance-limiting issues at the cathode mitigated, these air-breathing LFFCs can now be further developed to fully exploit their advantages of direct control over fuel crossover and the ability to individually tailor the chemical composition of the cathode and anode media to enhance electrode performance and fuel utilization, thus increasing the potential of laminar flow-based fuel cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号