首页 | 本学科首页   官方微博 | 高级检索  
     


ATR and transmission analysis of pigments by means of far infrared spectroscopy
Authors:Elsebeth L. Kendix  Silvia Prati  Edith Joseph  Giorgia Sciutto  Rocco Mazzeo
Affiliation:(1) M2ADL—Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, via Guaccimanni 42, 48100 Ravenna, Italy
Abstract:In the field of FTIR spectroscopy, the far infrared (FIR) spectral region has been so far less investigated than the mid-infrared (MIR), even though it presents great advantages in the characterization of those inorganic compounds, which are inactive in the MIR, such as some art pigments, corrosion products, etc. Furthermore, FIR spectroscopy is complementary to Raman spectroscopy if the fluorescence effects caused by the latter analytical technique are considered. In this paper, ATR in the FIR region is proposed as an alternative method to transmission for the analyses of pigments. This methodology was selected in order to reduce the sample amount needed for analysis, which is a must when examining cultural heritage materials. A selection of pigments have been analyzed in both ATR and transmission mode, and the resulting spectra were compared with each other. To better perform this comparison, an evaluation of the possible effect induced by the thermal treatment needed for the preparation of the polyethylene pellets on the transmission spectra of the samples has been carried out. Therefore, pigments have been analyzed in ATR mode before and after heating them at the same temperature employed for the polyethylene pellet preparation. The results showed that while the heating treatment causes only small changes in the intensity of some bands, the ATR spectra were characterized by differences in both intensity and band shifts towards lower frequencies if compared with those recorded in transmission mode. All pigments' transmission and ATR spectra are presented and discussed, and the ATR method was validated on a real case study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Keywords:Far infrared (FIR) spectroscopy  Attenuated total reflectance (ATR)  Transmission  Inorganic compounds  Polyethylene (PE) pellets
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号