首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vibrational spectrum and structure of CoO6: a model compound for molecular oxygen reversible binding on cobalt oxides and salts; a combined IR matrix isolation and theoretical study
Authors:Marzouk Asma  Danset Delphine  Zhou Ming Fei  Gong Yu  Alikhani Mohammad E  Manceron Laurent
Institution:UPMC Univ. Paris 06, UMR 7075, Laboratoire de Dynamique, Interactions et Re?activite? (LADIR), F-75005, Paris, France.
Abstract:The formation and structure of a novel species, a disuperoxo-cobalt dioxide complex (CoO(6)), has been investigated using matrix isolation in solid neon and argon, coupled to infrared spectroscopy and by quantum chemical methods. It is found that CoO(6) can be formed by successive complexation of cobalt dioxide by molecular oxygen without activation energy by diffusion of ground state O(2) molecules at 9K in the dark. The IR data on one combination and seven fundamentals, isotopic effects, and quantum chemical calculations are both consistent with an asymmetrical structure with two slightly nonequivalent oxygen ligands complexing a cobalt dioxide subunit. Evidence for other, metastable states is also presented, but the data are not complete. The electronic structure and formation pathway of this unique, formally +VI oxidation state, complex has been investigated using several functionals of current DFT within the broken-symmetry unrestricted formalism. It has been shown that the M06L pure local functional well reproduce the experimental observations. The ground electronic state is predicted to be an open shell (2)A' doublet with the quartet states above by more than 9 kcal/mol and the sextet lying even higher in energy. The ground state has a strong and complex multireference character that hinders the use of more precise multireference approaches and requires caution in the methodology to be used. The geometrical, energetic, and vibrational properties have been computed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号