首页 | 本学科首页   官方微博 | 高级检索  
     


Attraction of like-charged macroions in the strong-coupling limit
Authors:A.?Naji  author-information"  >  author-information__contact u-icon-before"  >  mailto:naji@theorie.physik.uni-muenchen.de"   title="  naji@theorie.physik.uni-muenchen.de"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,R.?R.?Netz
Affiliation:(1) Sektion Physik, Ludwig-Maximilians-Universität, Theresienstr. 37, 80333 München, Germany;(2) Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg, 14476 Golm, Germany
Abstract:Like-charged macroions attract each other as a result of strong electrostatic correlations in the presence of multivalent counterions or at low temperatures. We investigate the effective electrostatic interaction between i) two like-charged rods and ii) two like-charged spheres using the recently introduced strong-coupling theory, which becomes asymptotically exact in the limit of large coupling parameter (i.e. for large counterion valency, low temperature, or high surface charge density on macroions). In contrast to previous applications of the strong-coupling theory, we deal with curved surfaces and an additional parameter, referred to as Manning parameter, is introduced, which measures the ratio between the radius of curvature of macroions to the Gouy-Chapman length. This parameter, together with the size of the confining box enclosing the two macroions and their neutralizing counterions, controls the counterion-condensation process that directly affects the effective interactions. For sufficiently large Manning parameters (weakly-curved surfaces), we find a strong long-ranged attraction between two macroions that form a closely-packed bound state with small surface-to-surface separation of the order of the counterion diameter in agreement with recent simulations results. For small Manning parameters (highly-curved surfaces), on the other hand, the equilibrium separation increases and the macroions unbind from each other as the confinement volume increases to infinity. This occurs via a continuous universal unbinding transition for two charged rods at a threshold Manning parameter of $xi_c = 2/3$, while the transition is strongly discontinuous for spheres because of a pronounced potential barrier at intermediate distances. Unlike the cylindrical case, the attractive forces between spheres disappear slowly for increasing confinement volume due to the complete de-condensation of counterions. Scaling arguments suggest that for moderate values of coupling parameter, strong-coupling predictions remain valid for sufficiently small surface-to-surface separations.Received: 20 August 2003, Published online: 2 March 2004PACS: 87.15.-v Biomolecules: structure and physical properties - 82.70.Dd Colloids - 87.15.Nn Properties of solutions; aggregation and crystallization of macromolecules
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号