首页 | 本学科首页   官方微博 | 高级检索  
     

环境温度影响下基于支持向量机与强化飞蛾扑火优化算法的结构稀疏损伤识别
引用本文:雷勇志,黄民水,顾箭峰,杨雨厚,舒国明. 环境温度影响下基于支持向量机与强化飞蛾扑火优化算法的结构稀疏损伤识别[J]. 计算力学学报, 2022, 39(2): 170-177. DOI: 10.7511/jslx20210302002
作者姓名:雷勇志  黄民水  顾箭峰  杨雨厚  舒国明
作者单位:武汉工程大学土木工程与建筑学院,武汉430074,广西交科集团有限公司,南宁530007,河北交通职业技术学院,路桥工程系,石家庄050035
基金项目:广西玉林市科学研究与技术开发计划项目(玉市科20202927);南宁市优秀青年科技创新创业人才培育计划(RC20190108);武汉市城建委科技项目(201804);湖北省教育厅科学研究计划指导性项目(B2018051);湖北省高等学校优秀中青年科技创新团队计划(T2020010)资助项目.
摘    要:结构处于自然环境中常会受到环境温度变化的影响,引起实测动力响应出现较大误差,进一步影响对结构健康状况的判定.另外,基于优化算法的损伤识别在反演损伤位置及量化损伤程度时,易出现局部最优解,且计算效率低下.针对以上难题,本文提出一种结合支持向量机与强化飞蛾扑火优化算法的损伤识别方法,用于对环境温度影响下的结构稀疏损伤进行识...

关 键 词:结构损伤识别  温度影响  稀疏正则化  支持向量机  稀疏损伤  优化算法  1-40桥
收稿时间:2021-03-02
修稿时间:2021-11-05

Structural sparse damage identification considering ambient temperature variations based on support vector machine and enhanced moth-flame optimization
LEI Yong-zhi,HUANG Min-shui,GU Jian-feng,YANG Yu-hou,SHU Guo-ming. Structural sparse damage identification considering ambient temperature variations based on support vector machine and enhanced moth-flame optimization[J]. Chinese Journal of Computational Mechanics, 2022, 39(2): 170-177. DOI: 10.7511/jslx20210302002
Authors:LEI Yong-zhi  HUANG Min-shui  GU Jian-feng  YANG Yu-hou  SHU Guo-ming
Affiliation:School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430074, China;Guangxi Transportation Science and Technology Group Co., Ltd., Nanning 530007, China; School of Road and Bridge Engineering, Hebei Jiaotong Vocational and Technical College, Shijiazhuang 050035, China
Abstract:Civil engineering structures are always affected by ambient temperature variations,which will influence the results of modal testing and set up obstacles to the evaluation of real structural damage.Furthermore,a damage identification method based on an optimization algorithm is easy to be trapped in a local optimum and lower computing efficiency when the method is used to locate and quantify damage.Aiming to the above problems,in this paper,a damage identification method,which is based on support vector machine (SVM) and enhanced moth-flame optimization (EMFO),is proposed to solve a structural sparse damage identification problem considering temperature variations.Firstly,SVM is used to quantify structural temperature variations.Then,a sparse regularization method is introduced to determine structural sparse damage conditions.Thirdly,the temperature variations and damage situation obtained in the previous step are adopted to perform the initialization of EMFO,which can narrow the search space,and enhance damage identification efficiency.Finally,two examples,a simulated simply supported beam considering temperature variations and random noise effects,and a real engineering structure of I-40 Bridge,a large steel-concrete composite bridge,are utilized to verify the effectiveness of the proposed method.
Keywords:structural damage identification  temperature effect  sparse regularization  support vector machine  sparse damage  optimization algorithm  I-40 bridge
本文献已被 万方数据 等数据库收录!
点击此处可从《计算力学学报》浏览原始摘要信息
点击此处可从《计算力学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号