首页 | 本学科首页   官方微博 | 高级检索  
     


A chordal preconditioner for large-scale optimization
Authors:Thomas F. Coleman
Affiliation:(1) Computer Science Department & Centre for Applied Mathematics, Cornell University, 14853 Ithaca, NY, USA
Abstract:We propose an automatic preconditioning scheme for large sparse numerical optimization. The strategy is based on an examination of the sparsity pattern of the Hessian matrix: using a graph-theoretic heuristic, a block-diagonal approximation to the Hessian matrix is induced. The blocks are submatrices of the Hessian matrix; furthermore, each block is chordal. That is, under a positive definiteness assumption, the Cholesky factorization can be applied to each block without creating any new nonzeros (fill). Therefore the preconditioner is space efficient. We conduct a number of numerical experiments to determine the effectiveness of the preconditioner in the context of a linear conjugate-gradient algorithm for optimization.
Keywords:Large-scale optimization  chordal graph  preconditioned conjugate-gradients  unconstrained minimization  perfect elimination graph  sparse Cholesky factorization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号