首页 | 本学科首页   官方微博 | 高级检索  
     


In Situ Synthesis and Characterization of Polypyrrole/Graphene Conductive Nanocomposites via Electrochemical Polymerization and Chemical Reduction
Authors:Hua Zhang  Chunxiao Wang  Lu Pei  Zhongjie Han  Changqing Fang
Affiliation:Institute of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an, Shaanxi, P. R. China
Abstract:Polypyrrole/graphene sheets (PPy/GNs) nanocomposite electrodes were in- situ synthesized via electrochemical polymerization and chemical reduction from pyrrole (Py) and graphene oxide (GO). The surface morphologies of the nanocomposites were observed by scanning electron microscopy (SEM). The SEM results showed graphene sheets (GNs) scattered on the surface of the polypyrrole (PPy), and the morphologies of PPy/GNs nanocomposites manufactured by pulse current (PC-PPy/GNs) or direct current (DC-PPy/GNs) were smoother than that of PC-PPy. The electrochemical capacitance properties of the nanocomposite films were measured by cyclic voltammetry (CV), galvanostatic charge and discharge (GC), and electrochemical impedance spectroscopy (EIS) techniques in 3 mol·L?1 KCl aqueous solutions. The results indicated that the specific capacitance of the DC-PPy/GNs nanocomposite was 13.5% higher than that of a PC-PPy electrode. Comparison of the electrochemical performance of the nanocomposites indicated that the PC-PPy/GNs nanocomposite had higher specific capacitance and better charging/discharging capability than that of the DC-PPy/GNs nanocomposite. The specific capacitance of the PC-PPy/GNs nanocomposite could reach to 280 F·g?1 at a scanning rate of 100 mV·s?1.
Keywords:polypyrrole  graphene  in-situ synthesis  nanocomposite  electrochemical
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号