首页 | 本学科首页   官方微博 | 高级检索  
     


An equation of state for the isotropic phase of linear,partially flexible and fully flexible tangent hard-sphere chain fluids
Authors:Thijs van Westen  Bernardo Oyarzún  Thijs J.H. Vlugt
Affiliation:Process and Energy Laboratory, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands
Abstract:A new equation of state is developed that accurately describes the isotropic phase behaviour of linear, partially flexible and fully flexible tangent hard-sphere chain fluids and their mixtures. The equation of state is based on the equation of state of Liu and Hu [H. Liu and Y. Hu, Fluid Phase Equilibr. 122, 75 (1996)] for fully flexible chain fluids. The effect of molecular flexibility is described by a pure-component parameter that is introduced in the theory at the level of the cavity correlation function of next-to-nearest neighbour segments in a chain molecule. The equation of state contains a total of three adjustable model constants. The extension to partially flexible- and linear chain fluids is based on a refitting of the first model constant to numerical data of the second virial coefficient of partially flexible and linear tangent hard-sphere chain fluids. The numerical data were obtained from an analytical approximation for the pair-excluded volume. The other two parameters were adjusted to molecular simulation data for the pressure of linear tangent hard-sphere chain fluids. For both, pure component systems and mixtures of chains of variable flexibility, the pressure and second virial coefficient obtained from the equation of state, are in excellent agreement with the results from Monte Carlo simulations. A significant improvement to TPT1, TPT2, generalised Flory-dimer theory and scaled particle theory is observed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号