首页 | 本学科首页   官方微博 | 高级检索  
     


Spatial hydration structures and dynamics of phenol in sub- and supercritical water
Authors:Plugatyr Andriy  Nahtigal Istok  Svishchev Igor M
Affiliation:Department of Chemistry, Trent University, Peterborough, Ontario K9J 7B8, Canada.
Abstract:The hydration structures and dynamics of phenol in aqueous solution at infinite dilution are investigated using molecular-dynamics simulation technique. The simulations are performed at several temperatures along the coexistence curve of water up to the critical point, and above the critical point with density fixed at 0.3 g/cm3. The hydration structures of phenol are characterized using the radial, cylindrical, and spatial distribution functions. In particular, full spatial maps of local atomic (solvent) density around a solute molecule are presented. It is demonstrated that in addition to normal H bonds with hydroxyl group of phenol, water forms pi-type complexes with the center of the benzene ring, in which H2O molecules act as H-bond donor. At ambient conditions phenol is solvated by 38 water molecules, which make up a large hydrophobic cavity, and forms on average 2.39 H bonds (1.55 of which are due to the hydroxyl group-water interactions and 0.84 are due to the pi complex) with its hydration shell. As temperature increases, the hydration structure of phenol undergoes significant changes. The disappearance of the pi-type H bonding is observed near the critical point. Self-diffusion coefficients of water and phenol are also calculated. Dramatic increase in the diffusivity of phenol in aqueous solution is observed near the critical point of simple point-charge-extended water and is related to the changes in water structure at these conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号