首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of graphitic carbon nitrides synthesized from different precursors on Schottky junction characteristics
Authors:Orhan ALTAN
Affiliation:1. Department of Chemistry, Vocational School of Technical Sciences, Mersin University, Mersin, Turkey ; 2. Department of Nano Technology and Advanced Materials, Institute of Science, Mersin University, Mersin, Turkey
Abstract:Graphitic carbon nitride (g-CN) has gained wide interest in many areas, such as energy and the environmental remediation as a layered polymeric semiconductor that allows the formation of catalytically active Schottky junctions due to its proper electronic band structure. Interestingly, although it is known that the precursors used in the synthesis, can influence the properties of the g-CN, no detailed study on these effects on Schottky junctions could be found in the literature. In this research, the effects of g-CNs synthesized by thermal polycondensation of different precursors on the photocatalytic efficiency of Schottky junctions were investigated. For this purpose, urea, thiourea, melamine, and guanidine hydrochloride were used as different precursors, while the photocatalytic dehydrogenation of formic acid was used as a test reaction. The Schottky junctions were formed by decorating the as-prepared g-CNs with AgPd alloy nanoparticles (NP), which were synthesized by reduction of Ag and Pd salts with NaBH4. The structural, electronic and charge carrier dynamics of all prepared structures have been fully characterized by TEM, XRD, BET, XPS, UV-Vis DRS, PL, and PL life measurements. The results showed that the charge transfer dynamics of g-CNs surface defects are more effective in the photocatalytic performance of Schottky junctions than in structural features such as the size of the metal NPs or the surface area of the catalysts.
Keywords:Graphitic carbon nitride   Palladium nanoparticles   alloy nanoparticles photocatalyst   formic acid   dehydrogenation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号