首页 | 本学科首页   官方微博 | 高级检索  
     


A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals
Authors:Lü Yongjun  Cheng Hao  Chen Min
Affiliation:School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China. yongjunlv@tsinghua.edu.cn
Abstract:The self-diffusion coefficients D and the viscosities η of elemental Ni, Cu, and Ni-Si alloys have been calculated over a wide temperature range by molecular dynamics simulations. For elemental Ni and Cu, Arrhenius-law variations of D and η with temperature dominate. The temperature dependence of Dη can be approximated by a linear relation, whereas the Stokes-Einstein relation is violated. The calculations of D and η are extended to the regions close to the crystallization of Ni(95)Si(5), Ni(90)Si(10), and the glass transitions of Ni(80)Si(20) and Ni(75)Si(25). The results show that both D and η strongly deviate from the Arrhenius law in the vicinity of phase transitions, exhibiting a power-law divergence. We find a decoupling of diffusion and viscous flow just above the crystallization of Ni(95)Si(5) and Ni(90)Si(10). For the two glass-forming alloys, Ni(80)Si(20) and Ni(75)Si(25), the relation Dη = const is obeyed as the glass transition is approached, indicating a dynamic coupling as predicted by the mode-coupling theory. This coupling is enhanced with increasing Si composition and at 25%, Si spans a wide temperature range through the melting point. The decoupling is found to be related to the distribution of local ordered structure in the melts. The power-law governing the growth of solid-like clusters prior to crystallization creates a dynamic heterogeneity responsible for decoupling.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号