首页 | 本学科首页   官方微博 | 高级检索  
     


Co-and N-doped carbon nanotubes with hierarchical pores derived from metal-organic nanotubes for oxygen reduction reaction
Abstract:Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nanotubes(FA-Co NTs) were hydrothermally prepared as sacrificial templates for highly porous Co and N co-doped carbon nanotubes(Co-N/CNTs) with well-controlled size and morphology.The formation mechanism of FA-Co NTs was investigated and FA-Co-hydrazine coordination interaction together with the H-bond interaction between FA molecules was characterized to be the driving force for growth of one-dimensional nanotubes.Such distinct metal-ligand interaction afforded the resultant CNTs rich Co-N_x sites,hierarchically porous structure and Co nanoparticle-embedded conductive network,thus an overall good electrocatalytic activity for oxygen reduction.Electrochemical tests showed that Co-N/CNTs-900 promoted an efficient 4 e ORR process with an onset potential of 0.908 V vs.RHE,a limiting current density of 5.66 mA cm~(-2) at 0.6 V and a H_2 O_2 yield lower than 5%,comparable to that of 20%Pt/C catalyst.Moreover,the catalyst revealed very high stability upon continuous operation and remarkable tolerance to methanol.
Keywords:
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号