首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical study of the electronic state and H-elimination reactions for solvated magnesium cluster ions
Authors:Daigoku Kota  Hashimoto Kenro
Affiliation:Computer Center and Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji 192-0397, Japan.
Abstract:The potential-energy curves of the ground and low-lying excited states for Mg(+)NH(3) along the N-H distance were examined by the ab initio configuration interaction method. The photoinduced hydrogen elimination reaction found by the recent experiment is considered to occur via the ground-state channel. The geometries, energetics, and electronic nature of the ground-state Mg(+)(NH(3))(n) and MgNH(2) (+)(NH(3))(n-1) (n=1-6) were also investigated by second-order M?ller-Plesset perturbation theory and compared with those of the corresponding hydrated species. In contrast to Mg(+)(H(2)O)(n), the successive solvation energies of Mg(+)(NH(3))(n) become as large as those of MgNH(2) (+)(NH(3))(n-1) containing the Mg(2+)-NH(2) (-) core for n=5 and 6, because of the growing one-center ion-pair state with the Mg(2+) and the diffuse solvated electron. As a result, the solvation energies of the MgNH(2) (+)(NH(3))(n-1) are insufficient to overcome the huge endothermicity of Mg(+)(NH(3))-->MgNH(2) (+)+H, even at these sizes, which is responsible for no observation of the H-loss products, MgNH(2) (+)(NH(3))(n-1).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号