首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of piezo-film sensors for direct vibration and impact measurements
Authors:S. T. Jenq  C. K. Chang
Affiliation:(1) Institute of Aeronautics and Astronautics, National Cheng Kung University, 1 University Road, 701 Tainan, Taiwan, R.O.C.
Abstract:Piezo-film sensors were employed in determining the dynamic response of [(0 deg/90 deg)4]s s-glass/epoxy laminates and 2024 aluminum specimens. Simple beam- and plate-type sensor equations were derived based on classical plate theory incorporating the linear piezoelastic constitutive relationship. A series of vibration and impact tests were conducted for the determination of structural dynamic response. Piezo-film sensors, with a thickness and area of 110 μm and 1×1 cm2, respectively, were connected directly to a voltage measurement device in these tests. The first three bending frequencies of the glass-fiber-reinforced plastic (GFRP) cantilever specimen were examined. Experimental results and those simulated by the MARC finite-element code were found to be in good agreement, with the difference between the two being less than five percent. At frequencies above 3 kHz, piezo-film transducers are capable of closely detecting structural dynamic response in the absence of charge amplification. At frequencies lower than approximately 3 kHz, however, the voltage measured directly from a piezo-film sensor underestimates structural response. A modified piezo-film sensor equation is thus proposed for lower frequency measurements. Effect of frequency and piezo-film's size on lower frequency attenuation is explicitly formulated based on a simple RC circuit analogy. Drop tests were also performed on clamped [(0 deg/90 deg)4]s GFRP laminates and aluminum targets, with nine piezo-film sensors being glued to the specimen's distal surface in order to determine the low-speed impact response. Specimen transient central deflection subjected to impact loading was identified based on test findings and the plate-type piezo-film sensor equation. The results were found to be in good agreement with the numerical solution obtained from the MARC finite-element code.
Keywords:Piezo-film sensor  composite laminates  impact  vibration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号