首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and energetic aspects of the protonation of phenol,catechol, resorcinol,and hydroquinone
Authors:Bouchoux Guy  Defaye Dirk  McMahon Terrance  Likholyot Alexander  Mó Otilia  Yáñez Manuel
Affiliation:Département de Chimie Laboratoire des Mécanismes Réactionnels Ecole Polytechnique 91128 Palaiseau, France. bouchoux@dcmr.polytechnique.fr
Abstract:The various protonated forms of phenol (1), catechol (2), resorcinol (3), and hydroquinone (4) were explored by ab initio quantum chemical calculations at the MP2/6-31G(d) and B3LYP/6-31G(d) levels. Proton affinities (PA) of 1-4 were calculated by the combined G2(MP2,SVP) method, and their gas-phase basicities were estimated after calculation of the change in entropy on protonation. These theoretical data were compared with the corresponding experimental values determined in a high-pressure mass spectrometer. This comparison confirmed that phenols are essentially carbon bases and that protonation generally occurs in a position para to the hydroxyl group. Resorcinol is the most effective base (PA = 856 kJ mol-1) due to the participation of both oxygen atoms in the stabilization of the protonated form. Since protonation is accompanied by a freezing of the two internal rotations, a significant decrease in entropy is observed. The basicity of catechol (PA = 823 kJ mol-1) is due to the existence of an intramolecular hydrogen bond, which is strengthened upon protonation. The lower basicity of hydroquinone (PA = 808 kJ mol-1) is a consequence of the fact that protonation necessarily occurs in a position ortho to the hydroxyl group. When the previously published data are reconsidered and a corrected protonation entropy is used, a proton affinity value of 820 kJ mol-1 is obtained for phenol.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号